Bounds for the Hückel Energy of a Graph

نویسندگان

  • Ebrahim Ghorbani
  • Jacobus H. Koolen
  • Jae Young Yang
چکیده

Let G be a graph on n vertices with r := bn/2c and let λ1 ≥ · · · ≥ λn be adjacency eigenvalues of G. Then the Hückel energy of G, HE(G), is defined as HE(G) = ( 2 Pr i=1 λi, if n = 2r; 2 Pr i=1 λi + λr+1, if n = 2r + 1. The concept of Hückel energy was introduced by Coulson as it gives a good approximation for the π-electron energy of molecular graphs. We obtain two upper bounds and a lower bound for HE(G). When n is even, it is shown that equality holds in both upper bounds if and only if G is a strongly regular graph with parameters (n, k, λ, μ) = (4t + 4t+ 2, 2t + 3t+ 1, t + 2t, t + 2t + 1), for positive integer t. Furthermore, we will give an infinite family of these strongly regular graph whose construction was communicated by Willem Haemers to us. He attributes the construction to J.J. Seidel. E-mail Addresses: e [email protected] (E. Ghorbani), [email protected] (J.H. Koolen), [email protected] (J.Y. Yang) ∗This work was done while the first author was visiting the department of mathematics of POSTECH. He would like to thank the department for its hospitality and support. †He was partially supported by a grant from the Korea Research Foundation funded by the Korean government (MOEHRD) under grant number KRF-2008-314-C00007. 1 ar X iv :0 90 8. 26 67 v2 [ m at h. C O ] 4 S ep 2 00 9

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A note on the bounds of Laplacian-energy-like-invariant

The Laplacian-energy-like of a simple connected graph G is defined as LEL:=LEL(G)=∑_(i=1)^n√(μ_i ), Where μ_1 (G)≥μ_2 (G)≥⋯≥μ_n (G)=0 are the Laplacian eigenvalues of the graph G. Some upper and lower bounds for LEL are presented in this note. Moreover, throughout this work, some results related to lower bound of spectral radius of graph are obtained using the term of ΔG as the num...

متن کامل

On net-Laplacian Energy of Signed Graphs

A signed graph is a graph where the edges are assigned either positive ornegative signs. Net degree of a signed graph is the dierence between the number ofpositive and negative edges incident with a vertex. It is said to be net-regular if all itsvertices have the same net-degree. Laplacian energy of a signed graph is defined asε(L(Σ)) =|γ_1-(2m)/n|+...+|γ_n-(2m)/n| where γ_1,...,γ_n are the ei...

متن کامل

On Zagreb Energy and edge-Zagreb energy

In this paper, we obtain some upper and lower bounds for the general extended energy of a graph. As an application, we obtain few bounds for the (edge) Zagreb energy of a graph. Also, we deduce a relation between Zagreb energy and edge-Zagreb energy of a graph $G$ with minimum degree $delta ge2$. A lower and upper bound for the spectral radius of the edge-Zagreb matrix is obtained. Finally, we ...

متن کامل

Laplacian Energy of a Fuzzy Graph

A concept related to the spectrum of a graph is that of energy. The energy E(G) of a graph G is equal to the sum of the absolute values of the eigenvalues of the adjacency matrix of G . The Laplacian energy of a graph G is equal to the sum of distances of the Laplacian eigenvalues of G and the average degree d(G) of G. In this paper we introduce the concept of Laplacian energy of fuzzy graphs. ...

متن کامل

Laplacian Sum-Eccentricity Energy of a Graph

We introduce the Laplacian sum-eccentricity matrix LS_e} of a graph G, and its Laplacian sum-eccentricity energy LS_eE=sum_{i=1}^n |eta_i|, where eta_i=zeta_i-frac{2m}{n} and where zeta_1,zeta_2,ldots,zeta_n are the eigenvalues of LS_e}. Upper bounds for LS_eE are obtained. A graph is said to be twinenergetic if sum_{i=1}^n |eta_i|=sum_{i=1}^n |zeta_i|. Conditions ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Electr. J. Comb.

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2009